
A Survey on CUDA

Er.Paramjeet kaur and Er.Nishi

Department of Computer Science and Engineering,
DAV University, Jalandhar, Punjab, India

Abstract — A major challenge in image processing is to attain
high precision and real -time performance which is difficult to
achieve even with most powerful CPU. CUDA has eliminated
the bottleneck of large execution time by processing a digital
image parallely rather than sequentially. In this paper we
critically analyzed various parallel computing techniques used
in digital image processing and also covered CUDA
framework overview, its working and its comparison with
other two parallel computing techniques Direct Compute and
OpenCL.

Key words – GPU, GPGPU, CUDA, NVIDIA, PTX

I. INTRODUCTION

 By dividing a large problem into smaller tasks, assigning
these tasks to multiple processors and executing them
concurrently is called parallel processing. The main
objectives of parallel processing are the high performance
by reducing the execution time, improve efficiency and
better utilization of resources. Shared memory (memory
accessible by multiple processing elements) and distributed
memory (each processing element has its own local
memory) are the two basic types of parallel computers with
respect to memory [2].

1.1 Digital Image Processing:
An image may be defined as a two-dimensional function,
f(x, y), where x and y are spatial (plane) coordinates, and
the amplitude of f at any pair of coordinates (x, y) is called
the intensity or Gray level of the image at that point. When
x, y, and the amplitude values of f are all finite, discrete
quantities,
The image will be a digital image, which is when processed
by a digital computer referred to as digital image
processing. An image is composed of finite number of
elements (pixels, pels and image elements) with particular
location and value for each of them [1]. Digital image
processing requires large memory and computational
power. If the image is processed sequentially it will
consume long time so images should be processed by some
parallel processing tools like matlab etc.

1.2 Graphics Processing Unit (GPU):
GPU also known as visual processing unit (VPU), are the
electronic circuits initially designed to run high definition
graphics on your PC but later on used to provide parallel
computing as it contain hundreds of cores. More general
use of GPU for no graphics has become popular over last
five years. The term GPU was popularized by NVIDIA in
1999, who marketed the GeForce256 as "the world's first
'GPU', or Graphics Processing Unit, a single-chip

processor. Rival ATI Technologies coined the term visual
processing unit or VPU with the release of
the Radeon9700 in 2002. GPUs are used in embedded
systems , mobile phones, personal computers, workstations,
and game consoles. In PC GPU can be present on a video
card, or on the mother board, or on CPU die.
Today, a major challenge in image processing is that it
requires high computational power to attain high precision
and real -time performance which is difficult to achieve
even with most powerful CPU (central processing unit).
GPU has hundreds of cores whereas latest CPU’s contain 4
or 8. [5]Each NVIDIA GPU has 8 to 240 parallel cores,
each core consists of four units named floating point unit,
logic unit (for add, sub, mul, madd), move and compare
unit, branch unit. Cores in GPU are managed by Thread
manager which can manage 12,000+ threads per core. GPU
has been developed into a very flexible and powerful
processor, which can be coded by using high level
languages. GPU supports 32-bit and 64-bit floating point
IEEE-754 precision and offers lots of GFLOPS. [4] 8 series
GPU deliver 25 to 200+ GFLOPS on compiled parallel C
applications which are available in laptops, desktops and
clusters. It is noticed that GPU parallelism is doubling
every year. Modern GPUs are deeply programmable and
support high precision that is 32 bit floating point
throughout the pipeline [5]. GPU provide high
computational density (uses 100s of ALUs) and memory
bandwidth (100+ GB/s). [6]In GPU computing model CPU
and GPU work together in a heterogeneous co- processing
computing model. The program is partitioned into a
sequence of kernels .Where GPU executes kernel code and
CPU executes serial code in the program. This reduces the
execution time of the program. In this way while doing
calculations by GPU, CPU time cycles can be used for
other high priority tasks.

1.3 GPGPU

General purpose GPU is a general purpose computing on
graphic processing unit (GPGPU) rarely written as GPGP
or GP²U. GPGPUs are the GPUs for non graphical
purposes. It is a methodology for high-performance
computing that uses graphics processing units to crunch
data. It is used for solving complex mathematical
operations to obtain low time complexity. Algorithms
suitable for GPGPU implementation must exhibit two
properties. First is data parallelism which means that a
processor can execute the operation on different data
elements simultaneously. Second is throughput intensive
which means that the algorithm is process lots of data
elements and exhibits parallelism. GPGPU can run certain

Paramjeet kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2210-2214

www.ijcsit.com 2210

algorithm 10 to 100 or more times faster than CPU.
Computer vision, video and image processing, physical
simulation, rendering ray tracing and to compute ray-object
intersections are some applications of GPGPU.

1.4 Comparison between CPU and GPU
The major difference between CPU and GPU is in its
architecture. In one side CPU is composed of only few
cores with lots of cache memory which enable it to handle
a few software threads at a time. On other side GPU is
composed of hundreds of that are capable of handling
thousands of threads simultaneously shown in fig 1.
Another main difference is in its functionality is that a CPU
carries out all the arithmetic and computing functions of a computer.
Whereas a GPU is an electronic circuit unit that is designed to rapidly
manipulate and alter memory to increase the rate at which the system
builds images in a frame.
The difference in the performance is due to the philosophy
of design from both processors approaches.

Fig. 1 Comparison between CPU and GPU

1.5 CUDA

Compute Unified Device Architecture (CUDA) is a new
hardware and software architecture created by NVIDIA for
designing and dealing with parallel computations on the
GPU. The initial CUDA SDK was made public on 15
February 2007, for support was later added in version 2.0.
CUDA works with all NVIDIA GPUs from the G8x series
onwards, including Deforces, Quadro and
the Tesla line. The release of GPU programming platform
CUDA offers highly parallel computation and flexible
programmable platform. CUDA application programming
interface (API) enables software developers to access the
GPU and also enable researcher to design programs for
both CPU and GPU with a C like programming language,
without basic knowledge on computer graphics. . The
CUDA platform is accessible to software developers
through CUDA-accelerated libraries, compiler
directives (such as OpenACC), and extensions to industry-
standard programming languages,
including C, C++ and Fortran. CUDA provide access to
developers to GPUs of virtual instruction set, onboard
memory and the parallel computational elements. CUDA
provide massive computational power to its programmers
as CUDA is for general purpose and designed to provide

parallelism by using GPUs. CUDA support fine grained
parallelism (description regards smaller components of
which the larger ones are composed) sufficient for utilizing
massively multithreaded GPUs.

A. The CUDA Architecture
GPUs can be used for general purpose (i.e. not exclusively
parallel) by using CUDA. Using CUDA, GPUs have a
parallel throughput architecture that emphasizes on
executing many concurrent threads slowly, rather than
executing a single thread very quickly in case of CPU .The
general CUDA Architecture consists of several
components like
1. Parallel compute engines inside every NVIDIA GPUs.
2. OS kernel-level support for hardware initialization,

configuration, etc.
3. User-mode driver, which provides a device-level AP

(application programming interface) for developers.
4. PTX (Parallel Thread Execution) instruction set

architecture (ISA) for parallel computing kernels and
functions. [19]

Fig. 2 Components of CUDA architecture

B. The CUDA Software Development Environment

The CUDA Software Development kit provides all the
tools, examples and
Documentation, which helps in developing applications
these are

1. Libraries: - CUDA architecture includes advanced
libraries like BLAS, FFT.

2. C Runtime: - It support execution of standard C
functions on the GPU and allows native bindings
for other high-level languages such as FORTRAN,
Java, and Python and APIs like OpenCL, DX
Compute.

3. Tools: - CUDA provide tools like NVIDIA C
Compiler (nvcc), CUDA Debugger (cudagdb),
CUDA Visual Profiler (cudaprof), and other
helpful tools.

4. Documentation:- Includes the CUDA
Programming Guide, API specifications, and other
helpful documentation.

Paramjeet kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2210-2214

www.ijcsit.com 2211

5. Samples: - SDK (software development kit) code
samples and documentation provide
demonstrations that help in Computing GPU
algorithms and applications.

Fig. 3 CUDA SDK

C. Working Of CUDA Model

CUDA is industry-standard C with minimal extensions and
programmer has to write a program for one thread. CUDA
is a scalable parallel programming model that means
program runs on any number of processors without
recompiling. As fig 4 shows

Fig. 4 CUDA Programming Model

A kernel is executed by a grid (decomposition of problem
into sequential steps), which further contain blocks
(decomposition of grids into parallel blocks called (CTAs),
these blocks again contain threads (decomposition of
blocks into parallel elements). A thread block is a
collection of threads that can share data through shared
memory and synchronized to their execution. But threads
from different blocks operate independently.

• Compiling CUDA Programs: - Source code for
CUDA is compiled with NVCC compiler drive by
invoking all the necessary tools and compilers, its
output will be either a CPU (C) code that must be
compiled with the rest of the application using
another tool. Or PTX Object code. CUDA code
requires two libraries during execution. The

CUDA runtime library (cudart) and CUDA core
library (CUDA).

Fig. 5 Compilation of CUDA Program

D. CUDA Memories

CUDA consists of basically five types of memories these
are shared, global, local, constant and texture memory.
Firstly global and shared memories are introduced in
CUDA, these two are most important and commonly in
use. Other three are used to improve performance. Their
configuration and scope is described by table 3 and
figure 6.

Each thread consists of Thread ID and Block Id. Each
kernel can read thread id per thread and can read block id
per block. Host CPU can read/ write global memory,
constant memory and constant memory per grid. Each
thread uses its ID to compute addresses and to make
control decisions.

Fig. 6 CUDA Memories

Paramjeet kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2210-2214

www.ijcsit.com 2212

TABLE 1
MEMORY REPRESENTATION OF CUDA

MEMORY LOCATION CACHED ACCESS
SCOPE

(“WHO?”)
Local Off-chip No No One thread

Shared On-chip N/A Read/Write
All threads
in a block

Global Off-chip No Read/Write
All threads

+ host

Constant Off-chip Yes Read
All threads

+ host

Texture Off-chip Yes Read
All threads

+ host

E. CUDA Advantages

1. Designed to run for non graphic purposes.
2. Its software development kit includes libraries, various
debugging, profiling and compiling tools.
3. Programming task is simple and easy as kernel calls are
written in C-like language.

4. It provide faster downloads and readbacks to and from
the GPU.
5. CUDA exposes a fast shared memory region (up to
48KB per Multi-Processor).

F. CUDA Limitations
1. CUDA is restricted to NVIDIA GPU’s only.
2. CUDA runs its host code through a C++ compiler so it
doesn’t support the full C standard.
3. Texture rendering is not supported in CUDA.

G. CUDA Applications
1. Mainly CUDA is designed for scientific purposes.
2. It is also used in medical imaging, cryptography, to run
image processing algorithms, neural networks, fast video
transcoding etc.

II. LITERATURE REVIEW:
Eric Olmedo, Jorge de la Calleja, Antonio Benitez, and Ma.
Auxilio Medina [7] says that CUDA obtain better results
in most cases than OpenCV. In this paper two filters are
developed using C language and executed with CUDA.
This paper uses the approach of point to point processing
of digital image processing by using CUDA as parallel
computing tool particularly for greyscale, brightening.
Dan Connors [8] studied the algorithms used to examine
parallel programming allowed for student creativity in that
students were able to make variations to methods
(histogram matching) and visually interpret the impact of
their changes. The open-ness of the exercises to allow
students to explore video content from you tube and gather
results from varying video types was met very
enthusiastically. By using parallel computing techniques
with CUDA and OpenCL increases the computer
performance for computer vision (enables computers to
process, analyse and understand the information of images
to produce structured information and/or make decisions).
In Kyu Park, Nitin Singhal, Man Hee Lee, Sungdae Cho,
and Chris W. Kim [9] selected four major domains 3D
shape reconstruction, feature extraction, image

compression, and computational photography and
implemented multi view stereo matching, linear feature
extraction, JPEG2000 image encoding, and non
photorealistic rendering as example applications. And
selected algorithms are parallelized efficiently on the GPU
using CUDA. A set of metrics was proposed to
parameterize quantitatively the characteristics of parallel
implementation of selected algorithms. In addition, these
metrics can be used alternatively to compare the two
implementations of the same algorithm on the GPU.
Performance is evaluated in terms of execution time and is
compared to the fastest host-only version implemented
using OpenMP.
Mark Johnson [10] examines the ways in which parallelism
can be used to speed the parsing of dense PCFGs. This
paper focus on two kinds of parallelism here: Symmetric
Multi-Processing (SMP) parallelism on shared-memory
multicore CPUs, and Single-Instruction Multiple-Thread
(SIMT) parallelism on GPUs. Also describe how to achieve
speed-ups over an already very efficient baseline parser
using both kind of technologies multi-core SMP and
CUDA parallelism.
Dar-Jen Chang1, Christopher Kimmer and Ming Ouyang
[11] presented that GPU implementation of the Nussinov
dynamic programming and it is noticed that Computation
results are 290 times faster than the CPU. The performance
of the CPU and GPU implementations are compared by
folding RNA sequences of lengths 1, 000, 2, 000. . . 16,
000. The computation time is the average of three separate
runs. The variation in the running time is less than 1%.
When folding the longest sequence (16,000 bases), the
(single thread) CPU computation takes four hours 45
minutes, while the newest GPU (C2050) needs only a little
over one minute. The largest speedup is achieved when a
sequence of 15,000 bases is folded; the Tesla C2050 is 290
times faster than a single thread CPU .computation.
Attila Reményi, Sándor Siennas, István Bándi , Zoltán
Vamoosed, Gábor Valcz, Pals Bundanoon, Szabolcs
Sergyán and Miklos Kozlovszky [12] state the use of
CUDA to detect the location of special tissue part, the
nuclei on (HE – hematoxilin eosin) stained colon tissue
sample images which helps in cancer treatment. It is
noticed that GPU is more suitable for high resolution
images where about 58- fold difference has been achieved.
Sidi Ahmed Mahmoudi and Pierre Manneback [13]
propose a development scheme which enables an efficient
exploitation of parallel (GPU) and heterogeneous platforms
(Multi-CPU/Multi-GPU), for improving performance of
single and multiple image processing algorithms. This
scheme allows a full exploitation of hybrid platforms based
on efficient scheduling strategies. It enables also
overlapping data transfers by kernels executions using
CUDA streaming technique within multiple GPUs. This
paper also includes parallel and heterogeneous
implementations of several features extraction algorithms
such as edge and corner detection. Experimentations have
been conducted using a set of high resolution images,
showing a global speedup ranging from 5 to 30, by
comparison with CPU implementations.

Paramjeet kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2210-2214

www.ijcsit.com 2213

Sanjay Saxena, Neeraj Sharma and Shiru Sharma[14]
design some parallel image processing algorithms like
segmentation, noise reduction, features calculation,
histogram equalization etc by using Multi Core architecture
and comparative study with some sequential image
processing Algorithm and noticed that parallel
implementation was about two and a half times faster than
the sequential segmentation.
Chaise Lin [15] implements a image authentication
algorithm with NVIDIA’s Tesla C1060 GPU devices. On
comparison it is noticed that our CUDA-based
implementation works 20x-50x faster with single
GPUDevice.
Jaycees Ghorpade, Jitendra Parande, Madhura Kulkarni
and Amit Bawaskar [16] show the architecture of CUDA
and its future need, limitations and comparison with other
parallel programming language like OpenCL and
DirectCompute.

III. CRITICAL ANALYSIS:
In this section, I have presented the comparison between
execution time of CPU and GPU on executing different
image processing algorithms. It is analysed that with the
help of CUDA the ability of GPU cores is properly utilized
and execution time is reduced to approximately half time.

TABLE 2

EXECUTION TIME OF DIFFERENT ALGORITHMS

Algorithms
Number of

images

CPU
(Executing

time)

GPU
(Executing

time)
[15]Content
authentication

500
(1024*1024)

7153.62 msec 220.53 msec

Corner and Edge
detection [13]

200
(2048*2048)

4006 sec 1240 sec

Nucleus detection
process [12]

1
(1024*1024)

45734 sec 28334 sec

Brightening image
transformation [7]

1
(4000*3000)

1610.854
(msec)

33.97197
(msec)

Darkening image
transformation [7]

1
(4000*3000)

1719.52881
(msec)

34.4515743
(msec)

Inverse sinusoidal
contrast
transformation [7]

1
(4000*3000)

2040.16223
(msec)

34.63972616
(msec)

Hyperbolic tangent
contrast
transformation [7]

1
(4000*3000)

1054.94413
(msec)

32.2680701
(msec)

Linear feature
extraction [9]

47
(2288*1712)

2375
(msec)

789.16
(msec)

JPEG2000
encoding (DWT)
[9]

47
(3024*2089)

754.95
(msec)

80.85
(msec)

JPEG2000
encoding (Tier-1)
[9]

47
(3024*2089)

1500
(msec)

1531
(msec)

IV.CONCLUSION:

After comparison of CUDA with other parallel computing
techniques it is clear that CUDA is much fast. So there is a
great scope of NVIDIA’s CUDA architecture. CUDA is
very efficient and can solve any complex problem in
milliseconds. CUDA act as a parallel computing tool on a
GPU and utilize its all cores and also free the CPU clock

cycles for other urgent works. CUDA architecture
combines both CPU and GPUs to perform sequential task
by CPU and parallel task by GPUs. In this way CUDA
reduces the execution time to great extend.

REFERENCES
[1] “Rafael C. Gonzalez”, “Richard E. Woods”,”Digital Image

Processing” Second Edition”, © 2002 by Prentice-Hall, Inc. Upper
Saddle River, New Jersey 07458.

[2] “Preeti kaur“, “Implementation of image processing algorithm on
the parallel platform using matlab”, International Journal of
Computer Science & Engineering Technology (IJCSET), ISSN:
2229-3345, Vol. 4 No. 06 Jun 2013.

[3] “Antonino Tumeo Politecnico di Milano”, “Massively Parallel
Computing with CUDA”, © NVIDIA Corporation 2008.

[4] “Balaji vasan srinivasan”, “graphical processor and cuda”, slides
adapted from CMSC828E spring 2009 lectures.

[5] “Sarah Tariq”, “An Introduction to GPU Computing and CUDA
Architecture”, © NVIDIA Corporation 2011.

[6] “John Nickolls”, “GPU parallel computing architecture and CUDA
programming model”, Hot chips 2007: NVIDIA GPU parallel
computing architecture, NVIDIA Corporation 2007.

[7] “Eric Olmedo, Jorge de la Calleja, Antonio Benitez, and Ma.
Auxilio Medina”,” Point to point processing of digital images using
parallel computing” , IJCSI International Journal of Computer
Science Issues, Vol. 9, Issue 3, No 3, May 2012 ISSN (Online):
1694-0814, www.IJCSI.org.

[8] “Dan Connors”,” Exploring Computer Vision and Image Processing
Algorithms in Teaching Parallel Programming”.

[9] “In Kyu Park,Nitin Singhal, Man Hee Lee, , Sungdae Cho, and Chris
W. Kim”, “Design and Performance Evaluation of Image Processing
Algorithms on GPUs”, IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, VOL. 22, NO. 1, JANUARY
2011.

[10] “Mark Johnson Centre for Language Sciences and Department of
Computing Macquarie University Sydney, Australia”, “Parsing in
Parallel on Multiple Cores and GPUs”, Mark Johnson. 2011. Parsing
in Parallel on Multiple Cores and GPUs. In Proceedings of
Australasian Language Technology Association Workshop, pages
29-37.

[11] “Dar-Jen Chang, Christopher Kimmer, Ming Ouyang”,
“Accelerating the Nussinov RNA Folding Algorithm with
CUDA/GPU”. Computer Engineering & Computer Science
Department, University of Louisville, Louisville, KY 40292, USA
2Informatics Department, Indiana University Southeast, New Albany,
IN 47150, USA”, 978-1-4244-9991-5/11/$26.00 ©2011 IEEE.

[12] “Attila Reményi, Sándor Szénási, István Bándi , Zoltán Vámossy,
Gábor Valcz, Pál Bogdanov, Szabolcs Sergyán and Miklos
Kozlovszky Óbuda“ ,“Parallel Biomedical Image Processing with
GPGPUs in Cancer Research” .

[13] “Sidi Ahmed Mahmoudi and Pierre Manneback”, “Efficient
Exploitation of Heterogeneous Platforms for Images Features
Extraction.

[14] “Sanjay Saxena, Neeraj Sharma and Shiru Sharma”, “Image
Processing Tasks using Parallel Computing in Multi core
Architecture and its Applications in Medical Imaging” , International
Journal of Advanced Research in Computer and Communication
Engineering Vol. 2, Issue 4, April 2013.

[15] “Caiwei Lin ,Lei Zhao and Jiwen”, “A High Performance Image
Authentication Algorithm on GPU with CUDA” , I.J. Intelligent
Systems and Applications, 2011, 2, 52-59, Published Online March
2011 in MECS(http://www.mecs-press.org/).

[16] “Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni and Amit
Bawaskar”, “GPGPU PROCESSING IN CUDA ARCHITECTURE”,
Advanced Computing: An International Journal (ACIJ), Vol.3, No.1,
January 2012.

[17] “NVIDIA® CUDA™, Architecture Introduction & Overview,
Version 1.1 April 2009”.

[18] “Introduction to CUDA” by “NVIDIA”, NVIDIA Corporation 2003.
[19] “NVIDIA CUDA Software and GPU Parallel Computing

Architecture” by “NVIDIA”, NVIDIA corporation 2008-2009.

Paramjeet kaur et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2210-2214

www.ijcsit.com 2214

